一. 比例的意义和基本性质
1、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:3
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
3、比和比例的区别
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。
4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。
二、比例和反比例
1、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
例如:
①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
2、成反比例的量:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)
例如:
①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④、40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
3、判断两种量成正比例还是成反比例的方法:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
三、比例的应用
1、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺的分类
(1)数值比例尺和线段比例尺
(2)缩小比例尺和放大比例尺
3、图上距离:实际距离=比例尺
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
实际距离×比例尺=图上距离
例如:已知实际距离4km和比例尺1:200000,则图上距离为:
400000×1/200000=2(cm)
图上距离÷比例尺=实际距离
例如:已知图上距离2cm和比例尺,则实际距离为:
2÷1/200000=400000cm=4km。
4、图形的放大与缩小:形状相同,大小不同。
5、用比例解决问题:
根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
四、. 比例尺公式:
实际距离=图上距离÷比例尺
图上距离=实际距离×比例尺
比例尺=图上距离÷实际距离
(在比例尺计算中要注意单位间的换算)
1公里=1千米=1×1000米=1×100000厘米
单位换算:
图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零。
数量关系:
从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和
解题技巧:
先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
例1: 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?
解:总份数为47+48+45=140
一班植树560×47/140=188(棵)
二班植树560×48/140=192(棵)
三班植树560×45/140=180(棵)
答:一、二、三班分别植树188棵、192棵、180棵。
例2: 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?
解: 3+4+5=1260×3/12=15(厘米)
60×4/12=20(厘米)
60×5/12=25(厘米)
答:三角形三条边的长分别是15厘米、20厘米、25厘米。
例3:从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。
解: 如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到
1/2∶1/3∶1/9=9∶6∶2
9+6+2=1717×9/17=9
17×6/17=617×2/17=2
答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。
例4:某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?
解: 80÷(12——8)×(8+12+21)=820(人)
答:三个车间一共820人